3.5.75 \(\int \frac {1}{x^2 (d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [475]

Optimal. Leaf size=229 \[ -\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d^2 e \left (c d^2-a e^2\right ) x}+\frac {\left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 a^{3/2} d^{5/2} e^{3/2}} \]

[Out]

1/2*(3*a*e^2+c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e
*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)-2*e*(c*d*x+a*e)/d/(-a*e^2+c*d^2)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2
)-(-3*a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a/d^2/e/(-a*e^2+c*d^2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {865, 836, 820, 738, 212} \begin {gather*} \frac {\left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 a^{3/2} d^{5/2} e^{3/2}}-\frac {\left (c d^2-3 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a d^2 e x \left (c d^2-a e^2\right )}-\frac {2 e (a e+c d x)}{d x \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*e*(a*e + c*d*x))/(d*(c*d^2 - a*e^2)*x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - ((c*d^2 - 3*a*e^2)*Sq
rt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(a*d^2*e*(c*d^2 - a*e^2)*x) + ((c*d^2 + 3*a*e^2)*ArcTanh[(2*a*d*e +
 (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*a^(3/2)*d^(5/
2)*e^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 865

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + c*(x/e))^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rubi steps

\begin {align*} \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\int \frac {a e+c d x}{x^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \int \frac {-\frac {1}{2} a e \left (c d^2-3 a e^2\right ) \left (c d^2-a e^2\right )+a c d e^2 \left (c d^2-a e^2\right ) x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{a d e \left (c d^2-a e^2\right )^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d^2 e \left (c d^2-a e^2\right ) x}-\frac {1}{2} \left (\frac {c}{a e}+\frac {3 e}{d^2}\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d^2 e \left (c d^2-a e^2\right ) x}-\left (-\frac {c}{a e}-\frac {3 e}{d^2}\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d^2 e \left (c d^2-a e^2\right ) x}+\frac {\left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 a^{3/2} d^{5/2} e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 201, normalized size = 0.88 \begin {gather*} \frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (-c^2 d^3 x (d+e x)+a^2 e^3 (d+3 e x)-a c d e \left (d^2-3 e^2 x^2\right )\right )+\left (c^2 d^4+2 a c d^2 e^2-3 a^2 e^4\right ) x \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{a^{3/2} d^{5/2} e^{3/2} \left (c d^2-a e^2\right ) x \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c^2*d^3*x*(d + e*x)) + a^2*e^3*(d + 3*e*x) - a*c*d*e*(d^2 - 3*e^2*x^2)) + (c^2*d^4
 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*x*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*S
qrt[e]*Sqrt[d + e*x])])/(a^(3/2)*d^(5/2)*e^(3/2)*(c*d^2 - a*e^2)*x*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 270, normalized size = 1.18

method result size
default \(-\frac {2 e \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{d^{2} \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{a d e x}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{2 a d e \sqrt {a d e}}}{d}+\frac {e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}{x}\right )}{d^{2} \sqrt {a d e}}\) \(270\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*e/d^2/(a*e^2-c*d^2)/(x+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d
^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)/a/d/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x))+e/d^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)*(x*e + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]
time = 9.24, size = 599, normalized size = 2.62 \begin {gather*} \left [\frac {{\left (c^{2} d^{4} x^{2} e + c^{2} d^{5} x + 2 \, a c d^{2} x^{2} e^{3} + 2 \, a c d^{3} x e^{2} - 3 \, a^{2} x^{2} e^{5} - 3 \, a^{2} d x e^{4}\right )} \sqrt {a d} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} + 4 \, {\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {a d} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ) - 4 \, {\left (a c d^{3} x e^{2} + a c d^{4} e - 3 \, a^{2} d x e^{4} - a^{2} d^{2} e^{3}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{4 \, {\left (a^{2} c d^{5} x^{2} e^{3} + a^{2} c d^{6} x e^{2} - a^{3} d^{3} x^{2} e^{5} - a^{3} d^{4} x e^{4}\right )}}, -\frac {{\left (c^{2} d^{4} x^{2} e + c^{2} d^{5} x + 2 \, a c d^{2} x^{2} e^{3} + 2 \, a c d^{3} x e^{2} - 3 \, a^{2} x^{2} e^{5} - 3 \, a^{2} d x e^{4}\right )} \sqrt {-a d e} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-a d e}}{2 \, {\left (a c d^{3} x e + a^{2} d x e^{3} + {\left (a c d^{2} x^{2} + a^{2} d^{2}\right )} e^{2}\right )}}\right ) + 2 \, {\left (a c d^{3} x e^{2} + a c d^{4} e - 3 \, a^{2} d x e^{4} - a^{2} d^{2} e^{3}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{2 \, {\left (a^{2} c d^{5} x^{2} e^{3} + a^{2} c d^{6} x e^{2} - a^{3} d^{3} x^{2} e^{5} - a^{3} d^{4} x e^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((c^2*d^4*x^2*e + c^2*d^5*x + 2*a*c*d^2*x^2*e^3 + 2*a*c*d^3*x*e^2 - 3*a^2*x^2*e^5 - 3*a^2*d*x*e^4)*sqrt(a
*d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 + 4*(c*d^2*x + a*x*e^2 + 2*a*d*e)*s
qrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a*d)*e^(1/2) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^2) - 4*(a*
c*d^3*x*e^2 + a*c*d^4*e - 3*a^2*d*x*e^4 - a^2*d^2*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))/(a^2*c*d^5
*x^2*e^3 + a^2*c*d^6*x*e^2 - a^3*d^3*x^2*e^5 - a^3*d^4*x*e^4), -1/2*((c^2*d^4*x^2*e + c^2*d^5*x + 2*a*c*d^2*x^
2*e^3 + 2*a*c*d^3*x*e^2 - 3*a^2*x^2*e^5 - 3*a^2*d*x*e^4)*sqrt(-a*d*e)*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)
*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-a*d*e)/(a*c*d^3*x*e + a^2*d*x*e^3 + (a*c*d^2*x^2 + a^2*d^2)
*e^2)) + 2*(a*c*d^3*x*e^2 + a*c*d^4*e - 3*a^2*d*x*e^4 - a^2*d^2*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*
e))/(a^2*c*d^5*x^2*e^3 + a^2*c*d^6*x*e^2 - a^3*d^3*x^2*e^5 - a^3*d^4*x*e^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[0,0,1]%%%},[6,0]%%%}+%%%{%%{[%%%{-2,[0,1,0]%%%},0
]:[1,0,%%%{

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^2\,\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(1/(x^2*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________